Stimulation of aquaporin-mediated fluid transport by cyclic GMP in human retinal pigment epithelium in vitro.

نویسندگان

  • Nicholas W Baetz
  • W Daniel Stamer
  • Andrea J Yool
چکیده

PURPOSE The retinal pigment epithelium (RPE) expresses aquaporin-1 (AQP1) and components of the natriuretic peptide signaling pathway. We hypothesized that stimulation of the natriuretic signaling pathway in RPE with atrial natriuretic peptide (ANP) and with membrane-permeable analogs of cGMP would induce a net apical-to-basal transport of fluid. METHODS The hypothesis was tested using human RPE cultures that retain properties seen in vivo. Confluent monolayers were treated with ANP or membrane-permeable cGMP analogs in the presence of anantin, H-8, and an AQP1 inhibitor, AqB013. Fluid movement from the apical to basal chambers was measured by weight and used to calculate net fluid transport. RESULTS Our results demonstrated a 40% increase in net apical-to-basal fluid transport by ANP (5 μM) that was inhibited completely by the ANP receptor antagonist anantin and a 60% increase in net apical-to-basal fluid transport in response to the extracellularly applied membrane-permeable cGMP analog pCPT-cGMP (50 μM), which was not affected by the protein kinase G inhibitor H-8. The aquaporin antagonist AqB013 (20 μM) inhibited the cGMP-stimulated RPE fluid flux. CONCLUSIONS The effect of cGMP is consistent with an enhancement of the net fluid flux in RPE mediated by AQP1 channels. Pharmacologic activation of cGMP signaling and concomitant stimulation of fluid uptake from the subretinal space could offer insights into a new approach to treating or reducing the risk of retinal detachment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IFN regulates retinal pigment epithelial fluid transport

Li R, Maminishkis A, Banzon T, Wan Q, Jalickee S, Chen S, Miller SS. IFN regulates retinal pigment epithelial fluid transport. Am J Physiol Cell Physiol 297: C1452–C1465, 2009. First published September 30, 2009; doi:10.1152/ajpcell.00255.2009.—The present experiments show that IFN receptors are mainly localized to the basolateral membrane of human retinal pigment epithelium (RPE). Activation o...

متن کامل

Effects of cyclic AMP on fluid absorption and ion transport across frog retinal pigment epithelium. Measurements in the open-circuit state

A modified version of a capacitance probe technique has been used to measure fluid transport across the isolated retinal pigment epithelium (RPE)-choroid of the bullfrog. The accuracy of this measurement is 0.5-1.0 nl/min. Experiments carried out in the absence of external osmotic or hydrostatic gradients show that the RPE-choroid transports fluid from the retinal to the choroid side of the tis...

متن کامل

Morphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space

Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...

متن کامل

Fluid transport across retinal pigment epithelium is inhibited by cyclic AMP.

Fluid transport across the retinal pigment epithelium (bullfrog) has been measured. These experiments were carried out by using a capacitance probe technique and a water-impermeable chamber that allowed the measurements to be made with an accuracy of 0.5-1.0 nl/min. With identical Ringer's solution on both sides of the epithelium, and in the absence of a hydrostatic driving force, the direction...

متن کامل

Release of ATP from retinal pigment epithelial cells involves both CFTR and vesicular transport.

The retinal pigment epithelium (RPE) faces the photoreceptor outer segments and regulates the composition of the interstitial subretinal space. ATP enhances fluid movement from the subretinal space across the RPE. RPE cells can themselves release ATP, but the mechanisms and polarity of this release are unknown. The RPE expresses the cystic fibrosis transmembrane conductance regulator (CFTR), an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 53 4  شماره 

صفحات  -

تاریخ انتشار 2012